

USE OF QUALITATIVE AND SEMI-QUANTITATIVE HISTOPATHOLOGY ANALYSIS IN ASSESSMENT OF WATER POLLUTION AND INFECTIONS IN *OREOCHROMIS NILOTICUS* OF LAKE VICTORIA, KENYA

55th KVA ANNUAL SCIENTIFIC CONFERENCE

SANDIES TROPICAL VILLAGE HOTEL, MALINDI

28TH SEPTEMBER 2021

DR. WAWERU KAMUNDIA, (BVM, MSc)

DEPARTMENT OF ANIMAL HEALTH AND PRODUCTION

Introduction

- Aquatic animal (Fish) exposure to pollutants and pathogenic microbes
- What are the adverse effect(s) on the health/welfare of fish.
- What is Qualitative and semi-quantitative histopathology analysis?

• Assess the health of Nile tilapia (Oreochromis niloticus)

using histopathological changes (qualitative tool) and

histopathological semi-quantitative tool on select organs.

• Compare the qualitative vs semi-quantitative tools

- Fish capture by fishermen: Dunga beach in Kisumu and Homa Bay
- Sample size: 144 fish (Oreochromis niloticus)
- Select organs: liver, kidney, gills collected and preserved in 10% buffered formalin.
- Tissues processed histopathology slides (Luna, 1963).

Methodology

JNIVERSITY OF NAIROB

Semi-qualitative assessment: uses weighted indices that have an ordinal-ranked value

- Reaction pattern
- Score value
- Importance factor

	UNIVERSITY OF NAIROB
Reaction Pattern	Alteration/ Lesion
Circulatory	Haemorrhages, Hyperemia, Aneurysm,
	Intercellular oedema
Regressive charges	Architectural and structural changes,
	plasma alteration, nuclear alterations,
	atrophy and necrosis
Progressive changes	Hypertrophy, hyperplasia
Inflammation	Exudate, activation of the reticulo-
	endothelial system (RES)
Tumour	Benign and malignant tumor
Progressive changes Inflammation Tumour	Hypertrophy, hyperplasia Exudate, activation of the reticulo- endothelial system (RES) Benign and malignant tumor

Score value (a)

0

2

4

6

Methodology

No occurrence of the lesion

The mild occurrence of the lesion

The moderate occurrence of the lesion

The severe occurrence of the lesion

Description

• Organ Index:

$$Iorg = \sum rp \sum alt \left[a_{1 \text{ org all } rp \ all \ alt} \times W_{1 \text{ org all}} \right]$$

where: I org = Organ Index, **a** 1 org all rp all alt = Reaction

Index and W 1 org all rp all alt = Importance Factor

Importance factor (w)	Description
1	Minimal pathologic importance
2	Moderate pathologic importance
3	Severe pathologic importance

• Total Organ Index:

$$Tot I_{org} = \sum org \sum rp \sum alt \{a_{1 \, org \, all \, rp \, all \, alt} \times w_{1 \, org \, all \, rp \, all \, alt} \}$$

rp all alt

Results: Frequency of lesions and weighted total organ indices

Site and Season	Ν	Frequency of Liver lesions	Mean Total liver index	Frequency of gill lesions	Mean Total kidney index	Frequency of kidney lesions	Mean Total kidney index
KISUMU 1	19	53 %	5.87 ± 1.84	79 %	3.35 ± 1.32	53%	4.48 ± 1.92
KISUMU 2	21	<u>52%</u>	3.42 ± 1.02	52.40 %	4.30 ± 1.05	50%	2.70 ± 1.30
KISUMU 3	69	85.50%	2.57 ± 0.87	69.50 %	2.46 ± 0.94	85.50%	3.32 ± 1.26
HOMABAY 1	22	31.25%	3.20 ± 0.99	59.10%	3.47 ± 1.36	31.30%	6.07 ± 2.11
HOMABAY 2	13	69.20%	5.19 ± 1.19	69%	3.76 ± 1.44	69.30%	3.33 ± 1.93
P-Value			1.34, 0.25		0.43,0.78		0.67, 0.62

K

Results.....

A- Epithelial lifting of gill lamella, B-Telangiectasia (H&E)

F- Inflammatory cells (green arrows) and blood vessel congestion in the hepatopancreas (C), (H&E, ×200)

Results.....

B

:A- Melanomacrophages centres interspersed in the pancreatic acinar cells (black arrows) (H&E, ×800),

coagulative necrosis showing hepatocyte and sinusoid cytolysis (H&E),

C- hepatocyte nucleus degeneration (blue arrow), enlarged and eosinophilic nucleus (a) and hepatocyte vacuolation and degeneration (H&E),

D-Thrombosis in a vein, showing the thin endothelial layer (black arrows)

- The fish organs had lesions in the various organs at varying frequencies.
- The weighted indices (semi-quantitative) that have an ordinal-ranked value to specific lesion indicates the impact of lesions in fish that may not be highlighted by the qualitative

Discussion....continued.

- Lesions linked to pollutants (melano-macrophage aggregation, necrosis) and infections (e.g. necrosis, leucocytic infiltration) => compared (Roberts, 2012, Agius 2001)
- Weighted indices (semi-quantitative): more accurate impact of lesions
- Semi-quantitative tools should be developed further and adopted.

Acknowledgments

Mbuthia P.G.¹, Bebora L.¹, Njagi L.W.¹, Nyaga P.N.1, and Mdegela, R.H.²

¹UoN, Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, Kenya, 2 Sokoine University of Agriculture, Department of Veterinary Medicine and Public Health,

Tanzania

Thank you all

